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1. Introduction
Humans come to recognize an infinite variety of natural 

and man-made objects in their lifetime and make use of 
sounds to identify and categorize them. How does this life-
long learning process begin? By the time children are 8–10 
months old their visual object categories are sufficiently 
stable and flexible to be used as the foundation for labe-
ling and referencing actions. In the first year of life, acou-
stic perception becomes language specific, and children 
acquire the segmental inventory and many phonotactic 
regularities of their mother tongue. Increasing amounts of 
evidence point to the growing capacity of infants at this 
stage to reliably map arbitrary sounds onto meanings, 
and this mapping process is crucial to the acquisition of 
language. Many of the hypotheses proposed to explain 
the learning of first words invoke special processes other 
than those involving development driven by sensorial 
experience. The reasons behind this are many, with some 
emerging from the particular characteristics observed in 
child development. One is the peculiar trend in the speed 
with which words are learned that have been referred to 
in the literature as ‘‘vocabulary spurt’’ and ‘‘fast mapping’’. 
Vocabulary growth is initially very slow, but suddenly 
speeds up at around 18 months of age. Once at this stage, 
children grasp aspects of the meaning of a new word on 
the basis of only a few incidental exposures (Carey 1978, 
pp. 264–93; Dickinson 1984, pp. 359–73). Another is the 
tendency to extend object names on the basis of shape 
similarity, as opposed to other visual cues (Landau et al. 
1988). 

By design, our model avoids invoking any ‘‘special me-
chanism’’ to explain the early acquisition of first words. 
What it does is simulate brain processes during an early 
crucial stage of development, by taking into account 
strictly visual and acoustic perceptions only. What follows, 
briefly summarizes explanations that have invoked me-
chanisms other than strictly perceptual ones. 

An idea that has been influential is that categorization 
involves essentially the reference to natural (and functio-
nal) ‘‘kinds’’ and that representing kinds implies the exer-
cise of specific capacities other than simply registering 

perceptual regularities in the environment. This idea spre-
ad widely in psychology after the notion of ‘‘natural kind’’ 
was introduced in the philosophical literature by (Putnam, 
1975; but also see Kripke, 1972). What they claimed is that 
when we name natural kinds (animals, chemical substan-
ces, etc.) we want our names to refer to the very essence 
of those kinds, irrespective of the contingent representa-
tions we have formed of them. 

While in the philosophical literature, these positions 
were intended to set apart ontology (category indivi-
duation) and conceptualization, with conceptualizations 
performing solely a contingent role in the probabilistic 
assessment of category membership, but with no role in 
defining the essential structure of the category, in psy-
chology a different conclusion has been drawn. The idea 
of natural kinds endowed with an essential structure has 
been taken to mean that categories are not just based on 
a simple evaluation of perceptual similarity, there must 
be a deeper common structure for people to treat a set 
of objects as a real category, and our conceptualizations 
have to be attuned to this structure, which is mainly con-
ceived as a theoretical core based on causal relationships 
(Murphy et al 1985). Some scholars have proposed that in 
humans there must be an innate predisposition to detect 
some of these causal structures: this could explain how 
infants can initially form the basic domains of objects, nar-
rowing the hypothesis space with respect to the patterns 
of features to be focused on first (Carey et al 1996). Other 
scholars have emphasized the importance of causal rela-
tions in later stages of child development for instance, the 
ability to detect hidden causal powers would systemati-
cally lead the process of category formation in 3-year-olds 
(Gopnik et al 2003). This approach has been generalized by 
also applying it to functional categories, and to artifacts, 
primarily. In this case, the deep structure of the category is 
not thought to be based on natural (causal) properties, ra-
ther it would depend on what objects are for, that is, how 
they can be used by us: it is the function of objects that se-
ems to drive categorization at two-years of age and after 
(Kemler Nelson et al 2000).

Obviously, those positions are controversial, and the 
overall debate is quite complex. Mandler (2004) denies 
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the need for the innate core knowledge claimed by Ca-
rey and Spelke (1996), and assumes that the first trends 
in category formation in infants could emerge from en-
vironmental regularities and physiological constraints. 
This would mean that causal and functional properties 
could be abstracted away from the sensorial input we are 
exposed to. Nonetheless, she thinks that low-level sen-
sitivity to environmental regularities is not all there is to 
category formation; one should also consider a different 
learning mechanism, consisting in attentive focusing on 
certain features. In other words, there would be a genuine 
difference between a purely perceptual learning process 
and a truly conceptual one, with only the latter delivering 
representations that are accessible to deliberate thou-
ght. Eimas and Quinn (1994), are critical of the distinction 
Mandler makes between the perceptual and conceptual 
categorization mechanisms. Nazzi and Bertoncini (2003), 
specifically address the difference in learning speed befo-
re and after the ‘‘vocabulary spurt’’, and propose that the 
transition corresponds to a shift from an associational to 
a referential lexical acquisition mechanism. Only the lat-
ter would allow the acquisition of genuine words as lin-
ks between phonetically specified sound patterns and 
object categories. Booth and Waxman (2002) and Diesen-
druck and Bloom (2003), argue that the shape bias is in 
itself a mechanism for learning new object names, rooted 
in the understanding that shape is a reliable cue to the 
object kind. Gershkoff-Stowe and Smith (2004) and Smith 
(2005), challenge Booth and others’ idea that the shape 
bias is a learning mechanism, they instead propose it as 
being a developmental product of children’s acquisition of 
language that presents systematic co-variations between 
visual appearances and acoustic features. 

Finally, we should mention what Tomasello has propo-
sed (1999; 2003), according to which inductive generali-
zation alone cannot explain the way humans form lingui-
stic categories. Tomasello’s issue is not how we categorize 
objects per se, but rather how words can be mapped onto 
objects (events, actions, etc.). This sort of mapping, howe-
ver, can play a major role in subsequent category forma-
tion, since some categories could be formed as a conse-
quence of word learning, rather than existing prior to it. 
What Tomasello proposes, is that this mapping takes pla-
ce not by induction alone, but rather by induction plus a 
sensitivity to social cues (direction of eye gaze, etc.), which 
reveals to the child what the speaker is focusing on. 

From our point of view, we do not deny that in building 
lexical categorization, humans must certainly rely on a 
great variety of skills that go beyond what is overt in visual 
and acoustic signals. The purpose of our model, however, 
is to try to assess to what extent sensorial experiences 
alone can account for early word learning. Similar models 
have been proposed in the past, as demonstration of what 
is ‘‘computationally possible’’ to achieve by perception alo-
ne (Regier, 2005; Rogers et al 2003). They have provided 
important evidence of how much categorization can de-
velop on the basis of perception, including phenomena 
such as the vocabulary spurt, fast mapping, and the selec-
tion of categorical salient features. Still, one may suspect 

that those results have been achieved thanks to a combi-
nation of wholly artificial phonological or semantic featu-
res and powerful algorithms, which are far removed from 
the reality of human development. We are attempting 
to work one time step behind, by searching for what is 
‘‘brain-possible’’ to achieve by perception alone. That is 
to say, we are trying to exclude from the model any algo-
rithmic power whatsoever that might go beyond what a 
brain can do. On the other hand, the model attempts to 
reconstruct in a plausible way, the human cortical archi-
tecture responsible for the visual and acoustic paths of 
the process. We believe that in shifting our perspective on 
inner brain mechanisms, certain dichotomies used in the 
above summary of theoretical positions, might fade away. 
One is the distinction between what is called ‘‘associative’’ 
learning and something else, for example, referential, at-
tentive, or based on causation, learning, by virtue of the 
well-known Hebbian principle (Hebb 1949) that is yet 
today acknowledged as describing most of the neural re-
presentation capabilities, which sees learning as triggered 
by the repeated temporal coincidence of different stimuli. 
As far as one class of stimuli becomes predictor of other 
stimuli on a regular basis, the connection between these 
classes naturally strengthens. Under this perspective, it is 
not surprising, that after the initial discovery that sound 
patterns might point to object categories, the same kind 
of association will gradually become easier, not to men-
tion stronger. 

We would add that recent studies have shown that the 
vocabulary spurt is not so much of a spurt at all, in that 
it instead demonstrates a gradual increase rate without 
an inflection point (Ganger et al 2004), and that fast map-
ping is a common feature of neural learning, not specific 
to object naming (Markson et al 1997). Similarly, for what 
concerns causation knowledge, there is a tradition both 
in philosophy and in psychology that has emphasized its 
perceptual basis rather than the idea that causes cannot 
be observed (Michotte 1963; Searle 1983). At the very le-
ast, it appears that there are perceptual cues, which are 
responsible for the fact that people come to perceive an 
event as causally determined (Scholl et al, 2000).  Atten-
tive phenomena are certainly at play during learning and 
are different from learning itself, even though established 
connections of stimuli facilitate later attentional selection 
of similar stimuli. Yet, Pruden et al. (2006), have demon-
strated that while 10-month-old infants are sensitive to 
social cues, they cannot recruit them for word learning. In 
any case, attention in this context acts essentially as a pre-
liminary selector of what object is referred to by a name 
in the visual field of the learner, after this selection, what 
happens is perceptual learning.

2. The model
Our artificial model of name and object learners, is a 

collection of neural networks organized as a simplified 
version of the visual and auditory paths in the cortex. In 
the computational structure of the model, there is an ove-
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rall minimum of mathematical design, specific to the fun-
ctions to be acquired. Most of the effort is in the inclusion 
of mechanisms of plasticity and in reproducing a correct 
hierarchy of cortical maps. 

We simulate plasticity in the cortex, and in how cortical 
maps are organized as a result of developmental proces-
ses, using a self-organization mathematical framework.  
This approach has been the object of several proposals for 
artificial neural networks.  The first implementation was 
proposed by von der Malsburg (1973), and Willshaw and 
von der Malsburg (1976), in models of the development of 
aspects of the visual system, based exclusively on the lo-
cal interaction of neurons. The difficulties of the system of 
differential equations in this early formulation made it un-
suitable for building cognitive models. Since then, much 
progress has been achieved, and today several models are 
available for the self-organizing development of cortical 
maps. 

In our model, we use a combination of two different 
approaches, one more suitable for replicating maps physi-
cally existing in the cortex, and another for abstracting 
higher-level functions that are not carried out in a well-
defined area in the brain, but most likely distributed over 
many areas in ways that still remain unclear. 

For the first purpose, we chose a mathematical abstrac-
tion of cortical maps, which is to a degree, faithful enough 
in reproducing a biological learning mechanism, through 
the combination of Hebb’s principle and neural homeosta-
sis, yet simple enough to allow the building of high level 
models:  the LISSOM (Laterally Interconnected Synergetical-
ly Self-Organizing Map) architecture (Bednar 2002; Sirosh 
et al 1997), a two-dimensional arrangement of neurons, 
with intracortical excitatory and inhibitory connections. 

The other type of artificial network included in the 
model is the Kohonen Map or SOM (Self-Organizing Map) 
that achieves self-organization through a simple winner-
takes-all mechanism (Kohonen 1995). The winner-takes-
all mechanism is a significant departure from the behavior 
of biological cortical circuits. It works as a mathematical 
substitution for the effect of lateral neural connections, 
but only assuming fixed connections and uniform nei-
ghborhoods. However, it is an efficient non-supervised 
representational device, useful at a level of abstraction hi-
gher then single cortical maps.  This network is used in the 
model as an abstract conceptual map.

2.1 Model components
An outline of the modules that make up the model is 

shown in Fig. 1. There are two main paths, one for the vi-
sual process and another for the auditory channel. Both 
paths include thalamic modules, which are still partially 
driven by development. However, since the detailed sha-
pe of their functions is not relevant in the scope of this 
study, all subcortical processes have been hardwired ac-
cording to what is known regarding their functions. 

In the visual path, LGN is implemented with simple on-
center and off-center receptive fields. More precisely, there 
are three pairs of sheets in the LGN maps: one connected 

to the achromatic intensity image plane, and the other 
two connected to the medium and long wavelength pla-
nes. In the color channels, the internal excitatory portion 
of the receptive field is connected to the channel of one 
color, and the surrounding inhibitory part to the opposi-
te color. The cortical process proceeds along two different 
streams: the achromatic component is connected to the 
primary visual map V1 followed by V2, the two spectral 
components are processed by map VO, the color center, 
also called hV4 or V8. The two streams rejoin in the cortical 
map LOC, the area recently suggested as being the first in-
volved in object recognition in humans (Kanwisher 2003). 
Details of the visual path are in (Plebe et al. 2007).

The hardwired extracortical MGN component is just 
a placeholder for the spectrogram representation of the 
sound pressure waves, which have been extracted with to-
ols of the Festival software (Black et al. 1997). It is justified 
by evidence of the spectrotemporal processes performed 
by the cochlear-thalamic circuits. The thalamic afferents 
are collected by a LISSOM module, acting as the audito-
ry primary cortex. The next map in the auditory path of 
the model is STS, because the superior temporal sulcus 
is believed to be the main brain area responsive to vocal 
sounds. The two higher cortical maps in the visual and 
the auditory paths, LOC and STS, carry the best represen-
tation coded by the models on object visual features and 
word features. These two representations are associated 
in an abstract type map, called ACM (Abstract Categorical 
Map). This component is implemented using the SOM ar-
chitecture described earlier, known to provide non-linear 
bi-dimensional ordering of input vectors by unsupervised 
mechanisms. It is the only component of the model that 
cannot be conceptually referred to as a precise cortical 
area. It is an abstraction of processes that actually involve 
several brain areas in a complex way, and as such departs 
computationally from realistic cortical architecture. 

2.2 Experiments and Results

2.2.1 Phases and development
The training of the model takes place in separate stages 

utilizing different sets of training samples. The different 
cortical components that comprise the model, are expo-
sed to a variety of stimuli sequentially. Though highly sim-
plified, this process parallels some of the natural phases of 
a child’s development. There are three main phases: pre-
natal, pre-linguistic and linguistic, as shown in Fig 2.  



17 RETI, SAPERI, LINGUAGGI | ANNO 4 | N. 1 | 2013 | ISSN 2279-7777

During the pre-natal phase, initially only V1, VO and A1 
maps are allowed to modify their synaptic weights, with 
the modification of V2 taking place shortly after, within 
the same phase. The stimuli presented to V1 and VO are 
synthetic random blobs that simulate pre-natal waves of 
spontaneous activity, known to play an essential role in 
the early development of the visual system, A1 is stimu-
lated with simple random Gabor-shaped trains of sound 
waves. The visual stimuli to V2 comprises pairs of elonga-
ted blobs with a coinciding end point in order to enhance 
the experience of patterns that are slightly more complex 
than lines, such as corners. 

The pre-linguistic phase, corresponding to that just af-
ter eye opening, involve the LOC and STS maps. For the vi-
sual pathway, natural images are now the primary stimuli. 
In order to include the primary and most realistic difficulty 
in recognition, which is the identification of an object un-
der different views, the COIL-100 collection has been used 
(Nayar et al 1995) where for each of the 100 objects, 72 
different views are available. Only 8 views per object were 
used during the learning phase of the model. All 72 views, 
however, were later used in the testing phases. 

All the auditory maps are exposed to the 7,200 most 
common English words (from http://www.bckelk.ukli-
nux. net/menu.html) with lengths between 3 and 10 cha-
racters. All words are converted from text to waves using 
the Festival Software, with cepstral order 64 and a unified 
time window of 2.3 s. 

At the end of this first phase of development, each map 
in the model has evolved its own function. Orientation 
selectivity is the main organization in the primary visual 
cortex, where the responsiveness of neurons to oriented 
segments is arranged over repeated patterns of gradually 
changing orientations, broken by few discontinuities. This 
sort of arrangement emerges in the model’s V1, as already 
demonstrated in (Plebe et al 2006) and (Sirosh et al 1997). 
Angle selectivity, or the responsiveness of neurons to sti-
muli containing angled lines, emerges in the model’s V2 
map, as is found in the biological correlate (details are in 
Plebe 2007). The model’s VO map develops a simple form 
of color constancy. Color constancy is the tendency of the 
color of a surface to appear more constant than it is in rea-
lity. This property is helpful in object recognition, and de-
velops sometimes between two and four months of age. 
One of the main functions shown by the LOC layer in the 

model is visual invariance, the property neurons have of 
responding to peculiar object features despite changes 
in the object’s appearance due to different points of view. 
Invariance is an important characteristic for an object re-
cognition area to have, and is found in the human LOC. 

Tonotopic mapping is a known feature of the primary 
auditory cortex that represents the dimensions of fre-
quency and time sequence in a sound pattern, and in the 
model it is achieved in A1. The spectrotemporal mapping 
obtained in STS is a population coding of features, in fre-
quency and time domains, representative of the sound 
patterns heard during the development phase. 

In the linguistic phase of development the ACM is in-
volved as well, and the visual and auditory paths are expo-
sed contemporaneously to stimuli occurring at the same 
time. Two kinds of events are simulated: the intentional 
ostensive naming of an object, and the casual association 
of sound patterns with natural scenes. For the first kind 
of event, the 100 objects of the COIL-100 collection are 
grouped manually into 38 categories, and the correspon-
ding names converted to waves. Each name is replicated in 
four utterances, using the en1 ‘‘Roger’’ male voice, and the 
us1 female American speaker, both duplicated at standard 
and slower speeds, using the 1.3 value of the Duration 
Stretch parameter in the Festival software. For the mea-
ningless coincidences of visual scenes and sounds, images 
from the McGill Flowers and Landscape collections (http://
www.tabby.vision.mcgill.ca/) and music sounds (Wagner, 
Der Fliegende Hollander) are used. 

In this phase, 500 clones of the model are individuali-
zed through the exposure to different sets of stimuli. From 
the 100 COIL objects, 500 different subsets are randomly 
extracted, grouped according to 5 different sizes. At the 

end of this phase, there will be 5 groups of models that 
can be considered as representing 5 different stages of de-
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velopment, each with a progressive vocabulary of known 
words, composed of 100 exemplar models (see Table 2). 
In should be noted that each stage has a fixed number of 
known objects, but because categories of objects in the 
COIL collection have an uneven number of exemplars, 
and being that the set of stimuli is selected randomly, the 
number of known words in a single stage of development 
varies slightly between individual models. The figures 
shown in Table 2 are the averages. 

All subsets used in the linguistic phase lack a category 
of objects used for the experiments as well as a small num-
ber of other objects used as exemplars in the triadic trials. 
The car category has been chosen because it is composed 
by a sufficient number of different samples (seven), with a 
variety of different shapes and colors. 

A theoretical difficulty in differentiating levels of matu-
rity within artificial networks is to be emphasized here. In 
general, there is a relationship between the performance 
of an artificial network in representing information, and its 
number of free parameters. Taking for the sake of clarity, 
only the final ACM map, it is well known that the number 
of different categories that can be ordered in a SOM map 
scales with the size of the map itself. For this reason, in an 
earlier preliminary version of this model (Plebe et al 2007), 
the size of the abstract SOM map was increased during the 
stages of development. This solution has two drawbacks: 
first it is not biologically realistic, as no similar growth 
process takes place in the cortex during development. 
Second, it introduces a subjective parameter that affects 
the results, due to the arbitrariness in the function relating 
SOM size with the knowledge level of the system. In this 
model, instead, the size of all the maps is fixed for all stages 
of development. This was possible, by keeping the overall 
size of the stimuli set constant during the linguistic phase, 
at all stages of development. At early stages, the model 
is exposed more often to random coincidences of scenes 
and sounds in the form of music, and less to purposeful 
object labeling, gradually the ratio is balanced, and in later 
stages the meaningful linguistic input predominates. 

2.2.2 Fast Mapping-Trials
In the first phase of these experiments, each model is 

trained to learn an unknown target object, with its name. 
This object is #23, visible in Fig. 3, and is then presented 
to the model under 3 different views. The duration of the 
presentation of this stimulus is very short (40 training 
epochs only), corresponding to a typical new name trai-
ning session in child experiments, that when the learning 
phase is very short and successful, corresponds to the fast 
mapping phenomena. Fast mapping is usually difficult to 
reproduce in artificial neural models, due to the fact that 
they typically suffer the drawback of ‘‘catastrophic inferen-
ce’’: the deterioration of the knowledge acquired before 
the fast-mapping event. As will be discussed later, this 
does not occur in our model. 

During the testing phase of the experiments, two 
objects, both new to the model, are presented. One object 
is a car, different from target #23 used in the training trial, 
the other is an unfamiliar object of a different category. 

Both objects are presented together with the verbal label 
“car”. We assume that the whole procedure is reasonably si-
milar to experimental protocols on fast mapping, in which 
a name for a new category is introduced in the training 

stage (‘‘this is a DAX’’), and then a small set of objects is 
presented in order to verify if, and how, the name has been 
mapped (‘‘give me a DAX’’) (Regier 2005; Smith L.B. 2001). 

3 Results and discussion
During preliminary screening, it was evident that for 

most of the COIL-100 objects, the task was easy, and the 
correct object was always chosen; therefore, the tests 

were performed on four non-car objects only that mostly 
confounded the models, compared with six exemplars of 
car, in all possible combinations. 

Table 3 lists the detailed results of all trials, computed as 
the fraction of correct choice, over all 100 models in each 
stage of development. 

The first thing to be noted is the good overall perfor-
mance of the models, that is, their good capacity to gene-
ralize on the basis of little exposure to a single exemplar 
of the new category. The rapid acquisition shown by the 
models could be considered as cases of both ‘‘fast cate-
gorization’’ and of ‘‘fast mapping’’. In fact, the models did 
not have a previous category for cars; they rapidly formed 
the category through few exposures to the image and the 
word. Subsequently the word simply behaves as a feature 
that co-varies coherently with other perceptual features 
of the object, without requiring any specialized mechani-
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sm for word learning, this is in line with the hypotheses 
proposed in (Smith L.B. 2001) and the model proposed in 
(Regier 2005). Getting into the details of the single tests, 
all four objects that sometimes confused the model are, at 
least partially, red. However, color is not the discriminating 
feature, since there are 13 more red objects in the COIL-
100 collection that were never chosen as the standard by 
the model. Object #38, the object that induced the most 
errors, is of a very different category (boat), but its contour 
is quite similar to the target. Object #100 is of a close ca-
tegory (truck), and of a similar color, but its shape is quite 
different. There is a structural similarity in the components 
(wheels), and the position of components with respect to 
the main body. All of the few confounding combinations 
improve in subsequent stages, except in the case of item 
#38 (the red boat), when compared with cars #6, #8, and 
#69. The confusion with object #38 improves in subse-
quent stages when compared with cars #15 and #91. The 
same improvement over subsequent stages is found for 
all the other non-car objects of the trials, including the 
truck #100. The larger difficulties in discriminating the 
newly learned car from item #38, suggest that at the out-
set the models base categorization on shape similarity. 
Sporadic choices of #100 (the red truck) during the first 
age groups may indicate an initial tendency to categorize 
by taking into account object components, as in (Bieder-
man 1987). 

Table 4 summarizes the accuracy of the models in ca-
tegorizing all known objects and compares the perfor-
mances before and after the trials with exposure to the 
standard object #23. Figures here, are mean and standard 
deviations over all 100 individual models for each stage. 
The accuracies are evaluated for object identification by 
visual appearance only, or by combination of vision and 
naming, and for categorization. This table confirms the 
good performance of the models that are able to learn 
objects and categories, at every stage of development. 
The small decrease in identification performance in subse-
quent stages is a normal consequence of the increase of 
the number of different objects to be identified. The size 
of the ACM SOM map allows a maximum coding of 100 
different items and that number is reached during later 
stages of development. The main achievement here is the 
limited effect the new fast mapping has on the knowled-
ge already acquired by the models. Noticeably, the ability 
of identifying objects when named, becomes significantly 
better than without naming after the fast mapping, and 
this effect is enhanced at later stages. It seems that as long 
as the language support improves, identification relies 
more and more on language itself. 

In Figure 4, we show examples of how the ACM cate-
gorial map is affected by the fast mapping. The pictorial 
representation of the maps is generally obtained by over-
lapping the image of the object that is mostly represented 
by a map neuron. In the first example, at stage I, the map 
appears sparse, since the model knows only 30 objects. 
After the learning phase of the trial, several neurons are 
recruited for representing the new object #23. Its repre-
sentation is spread over 5 neurons, probably due to the 
variety of appearance under all viewpoints, compared to 
the few views experienced by the model. We should re-
member that in the fast-mapping trials only 3 views of the 
object are presented, while for the evaluation, the full set 
of 72 views are used. The placing of the object is reasona-
ble, close to a red truck and the green boat that despite 
the color, as discussed earlier, shows a shape-bias effect. 
It can be seen that the other categorization in the map re-
mains almost unchanged, with the only exception being 
the can below a cup, in the bottom-left quarter of the map. 
It is clearly a marginal side-effect of the rearrangement of 
the neural vector codes, since this object mapping is qui-
te far from the car representing neurons in the map. The 
example at stage III, once again shows that neurons have 
been adapted for the new car category, without forgetting 
previously learned categories. The positioning, privileges 
again, closeness to boats and trucks, in this case, one gre-
en (surrounded by two #23 cars) and one red (top right). 

An interesting aspect that emerges from the experi-
ments is that the ability to learn a new object by its label 
seems to improve with the quantity of known objects and 
labels. This trend can be appreciated in the graphs of Fig. 
5, where success in making the correct choice is plotted 
against the stages of development. With respect to the full 
matrix of data given in Table 3, in the plot on the left, data 
have been averaged by columns (non-car objects), while 
in the right plot, data have been averaged by rows (car 
objects). A statistical analysis has been performed with 
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two-ways ANOVA, grouping the same data according to 
stage of development, and either by non-car objects or by 
car objects. As reported in Table 5, there is a clear effect of 
the stages of development. 

The direction of the trend has been further tested by 
positive linear correlation, results are reported in Table 6. In 

this analysis, the independent variable is treated ordinally, 
using the number of known objects, or known words. For 
both cases, data are grouped as before, either by non-car 
objects, or car objects. In all combinations, the correlation 
is strong and confirms the improvement of fast mapping 
abilities with the simulated linguistic development of the 
models.

4 Conclusions
We believe the model discussed here could be a useful 

tool in the study of language acquisition, both for the ge-
neral principles applied and for the specific results obtai-
ned. 

In general, the experiments described exemplify how 
a simulation model can be used in order to assess deve-
lopmental issues within a biologically constrained fra-
mework. What distinguishes our model is the effort to 
replicate with a high level of fidelity the contribution of 
some cortical areas to the emergence of early words. Su-
rely, our model omits a number of factors, which are cer-
tainly involved in word learning. Within the limits of the 
factors we focused on, however, the model reaches a con-
siderable degree of biological realism. In particular, the 
model grows from a detailed, biologically well-founded 
simulation of the ventral pathway of the visual cortex. The 
auditory pathway, has been built, although in a more spe-
culative way, in accordance with what is currently known 
about it, based on recent data coming from the neuro-
biological literature. Similarly, the training phases of the 
model have been designed so as to preserve a high level 
of accordance with developmental data. In this sense, 
our model is quite different from others that previously 
attempted to simulate some of the typical phenomena 
of early word learning. The emergence of fast mapping 
and fast categorization are embedded here, in a full de-
velopmental time course, showing in considerable detail 
how word learning evolves through stages of individual 
experience. We believe that this concept can be fruitful 
in investigating several aspects of early language acquisi-
tion. We have applied this approach in several other mo-
dels, which explored the role of working memory in lan-
guage evolution, for example (Plebe et al 2008), or which 
studied the acquisition of adjectives (Mazzone et al 2008). 

As far as the results of the model here presented are 
concerned, we do not claim that they disprove any of the 
positions reviewed in the introduction that posit special 
non-perceptual mechanisms at the basis of language lear-
ning. On the contrary, we agree that the acquisition of full-
blown language relies on a combination of several com-
plex mechanisms, with some emerging from experience 
alone. Our results suggest, in fact, that certain phenomena 
often taken to support the idea of ‘‘special’’ mechanisms 
at work, can also be observed in the absence of anything 
other than perception. It is the case of the increase of the 
ability of learning new words, as long as the known vo-
cabulary increases, or the bias for shape as cue for iden-
tifying named objects. In light of these results, we suspect 
that the limitations usually held against so-called associa-
tive learning might fade when the term is not used in its 
psychological sense, but instead used to refer to neural 
associative learning, at the synaptic level.
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