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Abstract
This paper focuses on Dehaene’s view of the core abilities underlying human numerical cognition, and considers whether it lends 

support, as it is claimed by Dehaene, to the intuitionist school in the tradition of Brouwer. The conclusion is that an intuitionist, Brouwe-
rian perspective is in principle incompatible with second-generation embodied cognitive science, which instead follows Dehaene’s 
approach.
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Introduction
In considering the issues that currently polarise the philoso-

phy of mathematics, it is reasonable to conclude that the ques-
tions raised by foundational schools are only apparently out of 
fashion. All di!erent points of view (formalism, logicism, intui-
tionism) represent still today important reference points that 
must be kept in mind when it comes to framing new research 
in the philosophy of mathematics. According to some authors, 
the main question of the philosophy of mathematics was and 
still is one related to the “foundations of mathematics” in the 
“three senses of foundation: metaphysical, epistemological and 
mathematical” (Shapiro, 2004, p. 37). This is true even despite 
the fact that the large and ambitious foundational school pro-
grams which begun in the "rst half of the twentieth century and 
the less ambitious programs of the second half of the twentieth 
century (which turned out to be simple variations on the themes 
raised by Frege, Hilbert and Brouwer) were not able to fully ad-
dress the issues regarding the nature of mathematics and to "nd 
a foundational and de"nitive aspect or conclusion. As a matter 
of fact, all this led to the opposite outcome: the conclusion that 
nothing similar actually exists.

Considering all this, several authors believe that the time has 
"nally come to rethink the philosophy of mathematics, moving 
away from foundational approaches, creating a philosophy of 
mathematics that is no longer independent from and which can 
be part of a general philosophy where several questions might 
be properly addressed. Bonnie Gold (1994) is one of the support-
ers of this idea and in What is the philosophy of mathematics and 
what should it be? she listed 38 questions concerning the main 
mathematical issues that should be investigated in order to gain 
interesting insights in "elds that go beyond the realm of math-
ematics. Many of these issues touched on traditional questions of 
the philosophy of mathematics (e.g. the questions raised about 
the existence of mathematical entities and its certainty, the role of 
mathematical demonstration, the limitations of intuition or other 
forms of knowledge, etc.). Other questions were instead aimed at 
investigating the nature of the science of mathematics, the rela-
tionship existing between the "rst concrete experiences and the 
most developed mathematical knowledge, or the relationship 
between mathematics and natural sciences. Indeed, over the last 
years, these questions have gone beyond the pure realm of phil-
osophy and they have become the object of concrete scienti"c 
research in the "eld of cognitive sciences and, more speci"cally, 
in the "eld of cognitive psychology. Considering the amazing 
progress made recently by cognitive sciences, it was natural to 
expect that neurobiologists and psychologists would get more 
interested in the "eld of mathematics, particularly as they started 
looking for the foundations of mathematics in human cognition.

Nevertheless, a particular and interesting phenomenon 
emerged: instead of deepening the analysis of the cognitive 
and cerebral mechanisms that are at the basis of mathematical 
constructions, some cognitive scientists (in fact, only few) de-
cided to side with one of the foundational schools created in the 
twentieth century, because of the internal dynamics of their own 
theoretical/experimental approach. A clear example of this phe-
nomenon is represented by the French neuroscientist Stanislas 
Dehaene. When confronted directly with foundational schools, 
Dehaene decided resolutely to side with intuitionism. In one of 
his works, he stated:

Among the available theories on the nature of mathematics, intui-
tionism seems to me to provide the best account of the relations 
between arithmetic and the human brain. The discoveries of the last 
few years in the psychology of arithmetic have brought new argu-
ments to support the intuitionist view that neither Kant nor Poincaré 
could have known. These empirical results tend to con"rm Poincaré’s 
postulate that number belongs to the “natural objects of thought,” 
the innate categories according to which we apprehend the world 
(Dehaene, 2011: 226-27]. 

After dismissing other alternatives (platonism, formalism, 
logicism), Dehaene opted for intuitionism, because in his view it 
succeeded in clarifying the relationship between arithmetic and 
the organisation of the brain. This point is made even clearer in a 
document that Dehaene prepared in 2006 as introduction to his 
course, in which he explained: 

The position I am defending (in this course) and which you can qualify 
as intuitionist, does not belong to any of these "elds [Platonist and 
formalist]. It postulates that the cognitive foundations of mathemat-
ics must be sought in a series of fundamental intuitions of space, time, 
and number shared by many species of animals and which originate 
in a distant past where these intuitions played an essential role to sur-
vive. Mathematics is built on the formalisation and creation of a con-
scious relationship among these di!erent intuitions. This position is 
close, but not identical, to the mathematical intuitionism of Brouwer 
and Poincaré. The di#culty lies in precisely de"ning what is meant by 
intuition. It is not certain, in fact, that the variety of properties that are 
attributed to it arise from a single cognitive process. Nevertheless, in 
the domain of elementary numerical cognition, recent research have 
de"ned very precisely a body of knowledge that can be quali"ed as 
‘numerical intuition’ or ‘number sense’ (Dehaene, 2006: 277-278).

Based on the results of his numerous experimental studies, 
Dehaene concludes that he has enough arguments to reject pla-
tonism and formalism, and to opt for intuitionism. In doing so, 
he shows a particular interest in the constructivist perspective 
of intuitionism, proving that foundational approaches are often 
popular also among non-philosophers. This paper tries to high-
light the reasons that led Dehaene to support intuitionism and 
evaluates how much this decision was justi"ed.



73 RETI, SAPERI, LINGUAGGI | ANNO 4 | Vol. 2 | N. 2 | 2013 | ISSN 2279-7777

1. Experiments on numerical cognition
In 1997 Stanislas Dehaene published the !rst edition of The 

Number Sense. In his book, Dehaene hypothesises that human 
beings are born with a “number sense” that they share with other 
animals and that this instinct is the expression of the functioning 
of a “mental organ”, a set of brain circuits that exist also in other 
species. According to Dehaene (1997), this “mental organ” works 
as an accumulator, namely a kind of approximate counting device 
that allows us to perceive, store, and compare numerical quan-
tities. To better understand these dynamics, it is useful to recall 
the metaphor of the water tank used by the author. According 
to the French neuroscientist, we should imagine each entity that 
must be counted as a speci!c quantity of water that is added to a 
tank; by marking the water-level of the tank, it is possible to com-
pare sets of di"erent sizes. Similarly, it is also possible to perform 
operations of addition and subtraction by simply adding or re-
moving a speci!c quantity of water. The accumulator would work, 
therefore, by recording di"erent events and by representing each 
event with a “drop of water”. In this way, di"erent numbers would 
be represented by di"erent levels of water; however, because 
such a system fails to represent the exact level of water, the func-
tioning of this mechanism is a"ected by two di"erent e"ects: the 
distance e"ect and the size e"ect. Because of the distance e"ect, 
the di#culty in distinguishing the di"erence between two sets is 
higher, the lower the di"erence between them. Similarly, because 
of the size e"ect, the di#culty in distinguishing two sets increases 
as their sizes do. The accumulator cannot therefore be accurate 
in these cases, because it is not able to represent the exact level 
of water. As a series of experimental data proved, this ability is 
not symbol- or language-dependent, it allows to approximately 
recognise quantities, and it is shared by other animals (pigeons, 
mice, crows, non-human primates) and infants1.

The American researcher Karen Wynn (1992) provided the 
clearest demonstration to the fact that even children are en-
dowed with this inbuilt “number sense” and that they are able 
to perform simple operations of addition and subtraction. She 
devised a series of brilliant experiments that exploited the chil-
dren’s ability to recognise physically impossible events by ob-
serving them over a long period of time2. In these experiments, 
!ve-month-old children were placed in front of a puppet theater 
equipped with a screen that could move up and down. Initially, 
the theater was empty and the researcher introduced one pup-
pet, placing it on the stage. Then, the researcher moved the 
screen up in order to hide the scene and introduced a second 
puppet. At this point, the screen was lowered, so that the chil-
dren could see two puppets on stage. The sequence was then 
repeated several times, but in some cases the puppets shown 
to the children represented impossible results (for example, 1 
+ 1 = 3 or 1 + 1 = 1). In these cases, the children watched the 
scene longer compared to what they did when two puppets ap-
peared. Wynn obtained the same results even by modifying the 
experimental procedure in order to test the ability of children to 
understand subtraction. In this experiment, an exact number of 
objects guided the behavior of children, not a rough distinction 
(for example, only one puppet vs. many puppets). In both con-
ditions tested, Wynn noticed that at the end of the experiment, 

1 All these experiments question the hypothesis put forward by Piaget 
(1952), in which he stated that there was an indivisible relation between 
the structures of general intelligence and the evolution of numerical 
skills.
2 Several previous experiments had shown that children were astonished 
when they experienced unexpected events that didn’t respect the basic 
laws of physics. These surprising events caused children to watch the 
scene for a longer time (for further information, cf. Wang & Baillargeon, 
2008).

the children paid more attention when the !nal result showed an 
inconsistency in numbers.

Fig 1. The experimental setting used by Karen Wynn

As mentioned above, Karen Wynn’s experiments involved 
only 5-month-old children but they were repeated also on in-
fants that were just a few days old (Baillargeon et al.,1985), hence 
providing sound evidence to the hypothesis that the “number 
sense” is an important part of the heritage of our evolution histo-
ry. Besides, Dehaene considers it as the seed that allows for the 
development of mathematical skills. Nevertheless, despite the 
fact that human adults use a symbol-system in order to represent 
and work with numbers, some experiments showed that they 
keep exploiting their analogical, non-verbal representations of 
numerosity when facing tasks that are similar to those involving 
the children of Wynn’s experiments3. Furthermore, other data 
that indicate the existence of a linguistically independent “num-
ber sense” in adults are provided by several neuropsychological 
studies performed on patients su"ering of “dyscalculia”4, which 
point to a separation between the system specialised in proces-
sing numerical information and the other semantic mechanisms, 
highlighting therefore the fact that arithmetical skills (even the 
most accurate and therefore not only those that provide appro-
ximations) are not only linguistically independent, but they are 
independent also of other skills, visual and spatial skills in primis 
(Butterworth, 1999; Dehaene, 2011). 

To sum up the view of the French neuroscientist, Dehaene af-
!rms that there are two di"erent cognitive systems relating to 
mathematical skills:

3 A !rst experiment was performed in 1974 by Buckley and Gillman 
(1974), who asked some adults to compare two di"erent groups of 
points. Regardless of the way in which the inputs were presented, the 
two researchers noticed two complementary e"ects: !rst of all, errors 
increased according to the reduction of the di"erence between the sizes 
of the two groups (distance e"ect); secondly, the errors increased when 
the numerosities to compare were very small (size e"ect). The same 
result was achieved years later by Van Oe"elen and Vos (1982). Similar 
results were obtained also by other studies (Barth et al., 2005).
4 De!cit in the ability of manipulating numbers that might a"ect both 
children and adults



74 RETI, SAPERI, LINGUAGGI | ANNO 4 | Vol. 2 | N. 2 | 2013 | ISSN 2279-7777

The !rst system is not based on symbols and it is approxima-
tive; it is based on the estimation of quantities; and it involves 
both a simple process of comparison and a series of basic arith-
metical operations like addition and subtraction.

The second system is based on symbols and it is language- 
and culture-dependent; it is typical of adults; and it is founded 
on the ability of counting, therefore on a numerical system and 
on all arithmetical operations.

The !rst system is the accumulator; it is independent of cul-
ture and language and it is made possible by a part of the brain 
responsible for the perception and representation of numerical 
quantities. The characteristics of this system link it to the proto-
arithmetical skills of infants and animals. On the other hand, the 
second system is culture-dependent and it depends also on a le-
arning process of symbols and rules; therefore, it is closely linked 
to language and hence typical of human adults. 

According to Dehaene, the awareness of the cultural nature 
of exact arithmetic is due to the “courage” and talent of some 
anthropologists and linguists “who took the pains to travel great 
distances in order to investigate the mathematical competence 
of remote cultures” (Dehaene, 2011: 260) in which there is a mi-
nimal mathematical vocabulary that in most cases only includes 
the words for “one”, “two”, “three”, “a lot”. In particular, the most 
important study investigating the numerical cognitive abilities 
of “primitive” populations was carried out by Pierre Pica and his 
colleagues (2004), following a visit paid by the author to the 
Munduruku tribe, an indigenous people living in the autono-
mous territory of the Para state (Brazil) and speaking a language 
that belongs to the Tupi family. In their language, the Munduru-
ku have names only for the numbers going from 1 to 5. Despite 
this fact, according to Pica, the Munduruku can identify quanti-
ties over !ve and they are aware of the basic laws that regulate 
the development of the cardinality of sets (union and addition, 
separation and subtraction, order of quantities). On the other 
hand, they face greater di"culties when dealing with arithme-
tical tasks that require an exact result (Pica et al., 2004; Dehaene 
et al., 2006; Dehaene et al., 2008; Frank, 2008). Therefore, despite 
the fact that these studies stressed the importance of a verbal 
counting system, they highlighted also that language - and cul-
ture – is not always involved in the manipulation of numbers and 
consequently human beings (adults and children alike) can ex-
ploit di#erent procedures in order to establish the quantity of 
objects in a speci!c set.

According to cognitivists, the quanti!cation process takes place 
in three di#erent ways, using estimation, counting and subitizing.

Estimation is used when it is necessary to process numero-
sities in an unde!ned way, for example when it is necessary to 
make an estimation about the number of people in a room (De-
haene, 1997). The approximate number obtained through this 
operation is always quite accurate, even if the !nal result may 
be a#ected by di#erent factors5. Besides, as mentioned in the 
previous paragraphs, estimations are a#ected by the distance 
e#ect and the size e#ect. In other words, it is easier to recognise 
the di#erence between 80 and 100 compared to the di#erence 
between 81 and 82. Furthermore, when the distance is the same, 
it is easier to recognise the di#erence between two small num-
bers (for example 10 and 20) compared to the same di#erence 
between two big numbers (for example 90 and 100). Compared 
to estimation, counting gives more accurate results and the psy-
chologists Gelman and Gallistel (1978) identi!ed its !ve main 
principles:

5 For example, humans tend to overestimate the number of objects if they 
are evenly spread, while at the same time they tend to underestimate 
objects when they are unevenly scattered around (cf. Dehaene, 2011; 
Frith & Frith, 1972).

One-to-one correlation: each element counted is identi!ed 
only by one single number;

stable order: numbers must be ordered in a reproducible se-
quence;

cardinality: the last number of the series represents the featu-
re of the entire set;

abstraction: all sets of entities can be counted (objects, events, 
mental constructions);

irrelevance of order: the order in which the di#erent ele-
ments that must be counted are processed is irrelevant to their 
counting.

Finally, the third process mentioned above represents still to-
day one of the most debated and controversial issues. Subitizing 
is a term derived from the Latin word subitus and it refers to a 
process of rapid and accurate recognition of the numerosity of 
sets containing a maximum of 4-6 units. The studies on subiti-
zing started right after Mandler and Shebo (1982) published the 
results of an experiment in which they asked some volunteers to 
determine, as fast as possible, the number of items shown on a 
screen. The results proved (!gure 2) that the reaction times recor-
ded a linear increase of 200 ms only for sets consisting of 4 to 6 
items, while for sets consisting of 1 to 3 items the reaction times 
were much faster and they increased only slightly according to 
the variation in the number of items. Finally, for sets consisting 
of more than 7 items, the reaction times were more or less stable.

Fig 2. Reaction times in identifying the number of items presented for a time of 200ms 
(Mandler & Shebo, 1982)

The research proved that for quantities from 1 to 3 or from 1 
to 4, the volunteers did not count the elements one by one, but 
they recognised immediately the total number of elements. In 
order to provide an explanation to these experimental results, 
the two researchers put forward the hypothesis that subitizing 
was due to the immediate perception of spatial con!gurations, 
according to which the quantity one must be represented by 
one point, two points necessarily form a line, three is identi!ed 
immediately as a triangular con!guration, while four is “subiti-
zed” only when it can be displayed in a canonical structure as a 
square or a triangle with a point in the center. For numbers over 
four, the variability of con!gurations increases, thereby making 
immediate recognition impossible. Authors like Gallistel and Gel-
man (1992) support instead the idea that “subitizing” is nothing 
more than a very rapid enumeration that exploits non-verbal la-
bels, in other words a form of pre-verbal and innate counting abi-
lity. Di#erent explanations were proposed by Alan Leslie and his 
colleagues (1998), and by Tony Simon (1999). Their explanations 
were inspired by the theory of “attention indicators” (object !les). 
According to this theory, a person identi!es an object because 
an “indicator” allows him to follow objects as they move by lin-
king together the di#erent perceptions of the same object that 
were recorded and distributed over time and space. The num-
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ber of simultaneously available indicators, however, is limited 
to four, and this explains why it is impossible to simultaneously 
follow more than four objects in the same moving group. Star-
ting from the indicators, it is therefore possible to infer the nu-
merosity of the sets of objects (for example, two sets of objects 
can be compared by making a correspondence term based on 
term-level indicators) and do some simple operations. Starting 
from these ideas, Stanislas Dehaene suggested the existence of 
two basic cognitive systems (core systems), in which the !rst one 
(accumulator) allows to make approximate representations of 
numerosities featuring an arbitrary number of objects, while the 
second one (subitizing) allows accurate representations of very 
small numbers of objects, something that from a phylogenetic 
and ontogenetic point of view give existence to formal arithme-
tic. Dehaene states that:

The current consensus is that we have not just one, but two systems 
for representing a number of objects without counting. The small-
number system, sometimes called the “object tracking” system, only 
represents sets of 1, 2, or 3 items. It lets us track their trajectories quite 
precisely, and therefore gives us an exact mental model of what hap-
pens when one object moves in or out of a small set. The approxima-
tion system, on the other hand, can represent any number, large or 
small. It allows us to compare them or to combine them into approxi-
mate operations (Dehaene, 2011: 258).

He continues arguing that:

So how does subitizing work? Current research suggests that we 
have 3 or 4 memory slots where we can temporarily stock a pointer to 
virtually any mental representation. This memory store is called ‘wor-
king memory’ — a transient supply that keeps the objects of thought 
on-line for a brief moment (Dehaene, 2011: 259).

In other words, according to Dehaene, when we are dealing 
with a number of objects under three, the working memory has 
enough “slots” that allow for an exact estimation. When there are 
more than three or four items, though, the second system starts 
functioning, but unlike the system of “object !les” it is no longer 
accurate, because it treats these objects as “noises” and therefore 
“seven and eight overlap, while two and eight do so far less” (De-
haene, 2011: 260).

As mentioned in the previous paragraphs, the debate on how 
the process of subitizing actually works is still in progress, but 
what seems to be accepted is the existence of an innate abili-
ty in children to represent the transformation of a set (addition 
and subtraction) and to understand the relationship between 
two numbers, even before the development of a verbal counting 
system that manifests itself through the representation of the 
cardinal value of a set. These experimental data have indeed 
shown that children (as well as some animals) are equipped, 
even at an early age, with a series of preverbal numerical skills 
that allow them to understand some events taking place in their 
environment. This does not mean that children always exploit 
this ability, nor that they are endowed with an infallible numeri-
cal competence. This is easily explained by the fact that children 
(like adults) exploit more easily perceptive indices or more ran-
dom - but cognitively less expensive - heuristic experiences. Ho-
wever, the question that unfortunately remains still unanswered 
concerns understanding how children are able to apply accurate 
numerical representations starting from approximate non-verbal 
representations. In other words, although children at this stage 
have already access to representations of approximate numeri-
cal quantity, they are unaware of it. Now, it seems clear that the 
concept of number must be accessible to consciousness, since 
the children who have acquired it are able to use numbers to di-
stinguish elements in collections of objects. Therefore, to explain 
the acquisition of mathematical concepts, we must answer the 

two following questions. How can the concepts of approximate 
numerosity become an object of thought that is so accessible to 
our consciousness? How are these concepts re!ned and speci-
!ed in such a way as to become numbers? Unfortunately, starting 
from these experimental results, there is currently no model that 
can truly demonstrate the role of language in the development 
of numerical skills starting from approximate pre-verbal skills6.

*&�Aflmalagfake�Yf\�l`]�aehY[l�g^�<]`Y]f]�k�Úf\af_k
As stated at the beginning of this paper, Dehaene is one of the 

few cognitive scientists who took a clear position in the debate 
between foundational schools. Considering recent neuroscienti!c 
discoveries, he sees the intuitionism of Poincaré and Brouwer as 
the most correct theory and he devotes entire pages of his most 
famous book, The Number Sense, to Poincaré, who claimed to 
be able to intuitively determine the certainty of a mathematical 
result even if proving it sometimes required several hours of cal-
culation. Besides, Poincaré claimed that the basis of the works of 
mathematics could be perceived by spatial, motor or numerical 
intuition. Dehaene, therefore, supports Poincaré’s intuitionism. He 
supports also his idea that the methods used to teach and learn 
mathematics should necessarily make use of intuition and reaso-
ning by analogy; he agrees with Poincaré on the fact that intuition 
and reasoning are equally essential in order to create new facts in 
mathematics. However, what seems to convince Dehaene about 
the soundness of Poincaré’s thought is an idea that Hadamard 
presents in his The psychology of invention in the mathemati-
cal !eld, referring to a passage of Poincaré’s work where he talks 
about mathematical discoveries and a"rms that “what’s most stri-
king at !rst is this appearance of sudden illumination, a manifest 
sign of long, unconscious prior work. The role of this unconscious 
work in mathematical invention appears to me incontestable” 
(Hadamard, 1945: 14). This consideration seems to convince De-
haene even more  about the fact that mathematicians, at least at 
the beginning of their studies, “have claimed to possess a direct 
perception of mathematical relations. They say that in their most 
creative moments, which some describe as “illuminations”, they do 
not reason voluntarily, nor think in words, nor perform long formal 
calculations” (Dehaene, 2011: 136). Therefore, these ideas follow a 
tradition in which intuition is seen as a source of direct, immediate 
knowledge, una#ected by inferential mediation, and which will be 
harshly criticised by Dieudonné, who stated that “the intuition of 
the whole is a great mysti!cation, because no one I know has in-
sight in the true sense of intuition, that is, immediate knowledge 
of whole numbers greater than ten. Consequently, to say that you 
have intuition of integers greater than ten is a big fraud” (Dieu-
donné, 1981: 23). Dehaene seems to escape Dieudonné’s criticism 
because, while accepting the idea that intuition is immediate, di-
rect, non-linguistic knowledge, he compares this concept of intu-
ition to his idea of subitizing which, as we have seen, is only valid 
for the !rst three positive integers and that after three proves to be 
fallible and subject to the distance e#ect and size e#ect.

Nevertheless, it is useful to remember that Poincaré provides 
di#erent meanings to the term “intuition”. For example, he writes 
the following:

We have then many kinds of intuition; !rst, the appeal to the senses 
and the imagination; next, generalization by induction, copied, so to 
speak, from the procedures of the experimental sciences; !nally, we 
have the intuition of pure number, whence arose the second of the 
axioms just enunciated, which is able to create the real mathematical 
reasoning. (Poincaré, 1907: 20).

6 For a full review on why it is not possible to give for granted the relation 
between elementary skills and approximation skills, cf. Rips et al., 2008.
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According to Poincaré, the last kind of intuition mentioned is 
the only one that can provide certainty, because it is the only 
one that is a clear manifestation of a property of intelligence it-
self. Therefore, when Dehaene a!rms of supporting the intuitio-
nism of Poincaré and simpli"es it to the concept of subitizing, 
he does so without considering that for Poincaré it is also a tool 
for demonstration and therefore not only a number generator. In 
other words, Poincare’s intuition is a broader concept compared 
to “subitizing” as de"ned by Dehaene. In fact, even if Poincaré has 
the perspective of an intuitionist, his philosophical thought un-
doubtedly integrates elements of formalisation. Taking a look to 
Poincaré’s famous passage “Thus logic and intuition have each 
their necessary role. Each is indispensable. Logic, which alone 
can give certainty, is the instrument of demonstration; intuition 
is the instrument of invention” (Poincaré, 1907: 23), it is possible 
to notice that it does only summarise a very important argument 
of his essay The value of science, in which he dwells upon the 
dialectic existing between sensitive intuition and analytical pro-
cedures, which Poincaré calls veri"cations and which are based 
on syllogism, replacement and nominal de"nition. It was preci-
sely because of these remarks that the positions of Poincaré were 
de"ned as belonging to a kind of semi- or pre-intuitionism.

Luitzen Egbertus Jan Brouwer is considered one of the gre-
atest mathematicians of the twentieth century. He discussed 
the relationship existing between intuitionism and the thought 
of Poincaré, highlighting the confusion that Poincaré allegedly 
made between “the language of mathematics and the real 
mathematical construction” (Brouwer, 1907: 176). While both 
Brouwer and Poincaré share the belief that intuition is the only 
thing that can guarantee the certainty of mathematics, Poincaré 
does not make a clear distinction between language and mathe-
matics. Contrary to Poincaré, Brouwer considers that intuition is 
the only basis of mathematical construction. Moreover, Brouwer 
considers formalism as useless and even harmful as it promotes 
the di#usion of “paradoxes” (Brouwer, 1907: 176).

If we want to take a closer look to Brouwer’s thought, we 
should start by considering that during his lifetime, Brouwer 
always showed an interest in Eastern mysticism and in the belief 
of the duality of mind-body. In his writings, it is easy to "nd refe-
rences to concepts such as karma, the life of the soul, reincarna-
tion, and immortality. Besides, the same references can be found 
also in his writings on mathematics. Although it is easy to under-
stand why members of the Western mathematics community so-
metimes did not see the relevance of these proposals, it is impor-
tant to highlight that Brouwer’s mystical beliefs are at the heart 
of his philosophy. For Brouwer, mysticism is indeed a source of 
knowledge just as reason is. Therefore, it is not possible to com-
pletely dissociate his mystical and moral thesis from his mathe-
matical thesis without signi"cantly altering the latter, especially 
with regard to the key element of its constructions, namely, “Pri-
mordial Intuition”. When dealing with primordial intuition (herei-
nafter PI), the subject becomes aware of the discrete elements 
in time, in other words he becomes aware of two discrete enti-
ties, one belonging to the present and the other belonging to 
the past. In this way, as it is described by Brouwer, intellect takes 
shape: “By a move of time a present sensation gives way to ano-
ther present sensation in such a way that consciousness retains 
the former one as past sensation” (Brouwer, 1948: 1235). In other 
words, when PI occurs, the consciousness retains two neighbou-
ring elements that are di#erent but uni"ed. The two elements 
are not identical, but they do form a single unit that Brouwer calls 
“twoity”. It is important to highlight that when dealing with PI, 
individuals are a#ected by the action of consciousness, which is 
described by Brouwer in di#erent ways, not so much as an event 
but rather as a phenomenon or a process.

Primordial intuition can be endlessly repeated; it depends 
only on the free will of the subject, thereby producing sequences 
of increasingly complex mental objects simply as repetition of 
the primordial act. With a twoity, it is possible to build a threeity; 
with a threeity it is possible to build another construction, and so 
on. Brouwer calls these sequences obtained through the repeti-
tion of PI with the name “causal sequences”, because of the orga-
nisation of these perceptions into strings of constructions linked 
by cause-e#ect relations. Since PI is responsible for the mental 
construction of all entities, including mathematical ones, all the 
relations that it builds are characterised by causality.

Following what has been outlined in the previous paragraphs, 
it is clear how it is possible to build constructions of mathemati-
cal entities starting from PI. When a subject builds the "rst twoi-
ty, it can be considered separately from another moment in time, 
becoming in this way a new “entry” for the same phenomenon 
that leads to the construction of a threeity.

The before-after relation contained in the twoity does not in-
dicate only the presence of two elements, but it represents also 
the beginning of another sequence that will produce another 
element. By abstraction from their temporal content, these se-
quences of n-units will become the sequence of ordinal numbers 
and subsequently also the whole of mathematics. Therefore, ac-
cording to Brouwer, all numbers - ordinals, natural and other - are 
constructions obtained from reiterations of PI: “This intuition of 
two-oneness, this ur-intuition of mathematics, creates not only 
the numbers one and two, but also all "nite ordinal numbers” 
(Brouwer, 1912: 12). Indeed, it is always possible for a person to 
build a higher number, because the number of possible repeti-
tions of PI is unlimited; the only limit is represented by the free 
will of the creator.

Therefore, according to Brouwer, there is a distinction in terms 
of the activity of consciousness between the naive stage (the 
initial stage of consciousness, primordial attention, PI) and the 
causal stage. During the latter, PI is activated by unifying sepa-
rate precepts in order to build complex mental objects. In other 
words, in the initial stage, the intellect (the mind) is at rest, it pas-
sively receives sensations, it is spontaneous and instinctive. The 
same cannot be said during the causal stage, because intellect 
is activated by sensations and it starts building sequences and 
creating relationships between them. In the third stage, the so-
cial stage, it is possible to make use of the causal sequences cre-
ated by other individuals in order to build more complex causal 
sequences in networks of social interactions. The fruits of such 
cooperation are the formulation of hypotheses and science.

It is in this stage that language becomes useful, because it 
simpli"es the transmission from one subject to the other. It also 
plays an important role in helping memory, though memory is 
far from infallible: “The role of mathematical language can only 
be that of an aid to help remember mathematical constructions 
or construction methods or to suggest them to others, su!cient 
for most practical purposes but never completely safeguar-
ding against error” (Brouwer, 1947: 339). Therefore, according 
to Brouwer, language does not play a role in the construction 
of mathematical concepts. In fact, mathematics is a free mental 
construction based on PI and therefore it precedes all forms of 
linguistic description. Language can only describe the construc-
tions made by PI. This separation of the language of mathematics 
from mathematics is the subject of the First Act Of Intuitionism:

Completely separating mathematics from mathematical language 
and hence from the phenomena of language described by theoreti-
cal logic, recognizing that intuitionistic mathematics is an essentially 
languageless activity of the mind having its origin in the perception 
of a move of time. This perception of a move of time may be descri-
bed as the falling apart of a life moment into two distinct things, one 
of which gives way to the other, but is retained by memory. If the 
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twoity thus born is divested of all quality, it passes into the empty 
form of the common substratum of all twoities. And it is this common 
substratum, this empty form, which is the basic intuition of mathema-
tics. (Brouwer, 1981: 4–5) 

As for logic, Brouwer describes it as a formal and sterile lan-
guage without any constructive power, obtained through the 
simple observation of the form of linguistic descriptions of 
mathematical processes. For Brouwer, mathematical entities 
are therefore mental constructions originated by the fact that 
subjects are able to distinguish between the content of sensa-
tions and the emergence of the moment when they occur. It is 
in fact in this stage that causal attention starts. At this stage, ma-
thematical attention is paid to the world of sensations, thereby 
contributing to the construction of a world of perceived objects, 
something that Brouwer calls “the world outside of the subject” 
(Brouwer, 1948).

Starting from these brief remarks on Brouwerian intuitionism, 
it is possible to say that Dehaene di!ers from Poincarè, while he 
seems to agree more with Brouwer, at least considering their 
starting points. Both Brouwer and Dehaene agree on the fact 
that mathematics is independent of language and logic, and that 
mathematics is entirely man-made, or better said it is entirely 
made by man’s free mind. Furthermore, it might be interesting 
to highlight that there are several similarities between the con-
tinuous “entry” of Brouwer and the supramodal representation 
mentioned by Dehaene. As a matter of fact, both authors sup-
port the idea of a system that allows individuals to build discre-
te objects and to represent the di!erence of a limited number 
of objects at the same time7. Besides, exactly as an “entry”, the 
analogical representation of a numerical quantity works inde-
pendently of traditional senses like touch, sight, etc. In Brouwer, 
the entry helps in distinguishing two elements by placing them 
at the same level, starting from a temporal level and then, gra-
dually, bringing them to an abstract, numerical level. In the same 
way, also the supramodal representation of numerosity leads to 
a specialisation: as mentioned in the previous paragraphs, De-
haene supports the idea that starting from some approximative 
representations of numerosities, it is possible to obtain accura-
te numbers that may be used in order to perform calculations 
or other arithmetical operations. Therefore, in both cases these 
representations allow to insert an unlimited number of new ele-
ments8. Besides, as the “entry” of Brouwer allows to recognise 
not only mathematical entities but also other kinds of entities, 
Dehaene contends that the neurones involved in the supramo-
dal representation of numerosity might play a role also in non-
mathematical constructions (for example, for other continuous 
quantities like lightness or format, cf. Pinel et al., 2004). 

However, the language-less feature of mathematics was 
considered by Brouwer as a necessary condition to practice it 
without violating his mystical conception. For Dehaene, the lan-
guage-less feature becomes the fundamental basis of elemen-
tary, approximative mathematics, shared by humans and other 
animals. While both authors share the need of a conception of 
mathematics not based on language, for Brouwer this need in-
volves the entire realm of mathematics because of a series of 

7 According to Brouwer, continuum and discrete are not opposite 
concepts, but instead they are complementary to each other: each and 
every one of them is used to de"ne and understand the other. They are 
essential to each other in order to create twoity: to witness change, it is 
necessary to witness two di!erent moments in time, before and after. 
These two moments create a di!erence in time in which change is 
observed (Brouwer, 1912 as mentioned in Benacera! & Putnam, 1964, 
p. 69).
8 Brouwer’s ‘entry’ refers to a similar idea of specialisation, since it is an 
endless divisible #ow in which natural, ordinal, and real numbers can be 
de"ned.

purely human reasons (mystical needs), while for Dehaene it in-
volves only approximate mathematics, which is accessible to ani-
mals and to populations who do not have many names for num-
bers. Therefore, the mathematical notion of Brouwer is much 
more general than the one described by Dehaene, as it includes 
all mental construction processes, conscious and unconscious, 
because according to Brouwer all our mental skills are based on 
PI. For example, Brouwer thinks that the construction of sensorial 
objects is possible thanks to mathematical skills. As Ewald rightly 
a$rms:

[...]the basic intuition of two-oneness underlies, not only pure ma-
thematics and theoretical logic, but also many scarcely conscious 
everyday mental processes, including the mental organization of the 
objects of the external world; so that in this sense mathematics is 
broader than any of the special sciences, and does not rest upon any 
foundation more fundamental than itself (Ewald, 1996: 1173).

On the other hand, according to Dehaene, the term “ma-
thematics” has a narrower connotation that includes only the 
processes and representations involved in tasks like counting, 
addition, multiplication, comparison of numbers, etc. In other 
words, Dehaene’s conception of mathematics is closer to the 
concept of common sense. Considering this, it is fairly easy to 
dissociate the pure mathematics of Brouwer, which corresponds 
to the formal mathematics of Dehaene, from general mathema-
tical skills, which are instead the equivalent of general cognitive 
abilities. Ultimately, what is built purely by PI without any help 
of the other senses, according to Brouwer, corresponds to the 
conception of common sense of mathematics as described by 
Dehaene. As a matter of fact, according to Dehaene, exact ma-
thematics is symbolism, therefore a type of language. In other 
words, it is what in the mystical view of Brouwer was considered 
as something to avoid because it was linked to activities aimed at 
the outside world. Contrary to what Dehaene contends, Brouwer 
supports the idea that language cannot guarantee mathematical 
exactness. According to Brouwer, the truth and validity of mathe-
matics must be found in the mental process. Brouwer’s acrimony 
against everything outside the mind, a hostility due to the mysti-
cal de"nition of the “search of happiness”, will lead him to convey 
a secondary role to the body, creating another salient point on 
which Dehaene and Brouwer will substantially di!er. Speci"cally, 
Dehaene attributes a fundamental role to the embodied com-
ponent of mathematical knowledge because he is convinced of 
the soundness of the data obtained through studies carried out 
on non-Western populations with minimal mathematical voca-
bulary that in most cases only includes words for “one”, “two”, “th-
ree”. Based on the outcomes of these studies, Dehaene believes 
that the transition towards counting systems with numbers over 
“three” required these populations to count by using di!erent 
parts of the body. This is the case, for example, of the Warlpiris 
(Australia), who use the terms for “one” and “two” in order to cre-
ate di!erent combinations and count sets containing up to four 
elements (Dehaene, 1997). The same happens in certain tribes of 
the Torres Strait islands, in the northern part of Australia, where 
natives use the words urapun and okosa for “one” and “two”, whi-
le the terms okosa-urapun (i.e. 2 + 1) and urapun-urapun (2 +2) 
are used for “three” and “four”. In addition to that, they also have 
the word ras, which means “a lot” (Ifrah, 1994). The same features 
can be found among some African people such as the Bushmen 
(Southern part of Africa), the Zulus and the Pygmies (Central part 
of Africa); some tribes of South America, like the Botucodus (Bra-
zil); and the Vedda people of Sri Lanka.

According to Dehaene, the use of "ngers, the entire hand and 
in some cases the whole body allows some people and tribes 
with a poor numbering system to designate di!erent quantities 
and numerosities. An example of this is the Kilenge people in 
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Papua New Guinea. They use the term “hand” to indicate 5, “two 
hands” for 10, “two hands” and “one foot” for 15, and the term 
“man” to indicate the number 20. By combining these terms with 
distinctive words for the numbers that go from one to four, the 
Kilenge people can count over 20 (35 = “one man, two hands and 
one foot”). Several aboriginal groups living on the highlands of 
Papua New Guinea use counting systems that designate di!e-
rent parts of the body in a speci"c order. For example, the indi-
genous people living on the Murray Islands in the Torres Strait 
(Dehaene, 1997) start counting by indicating the little "nger of 
the right hand (1) and then move towards the thumb (5). Then, 
they move on to the wrist (6), the elbow (7), the shoulder (8) and 
the torso (9). At this point, they go to the left arm and they follow 
the same procedure but in reverse order. When they reach the 
little "nger of the left hand (17), they keep counting following a 
similar procedure starting from the little toe of their left foot (18) 
until reaching the little toe of the right foot (33), passing through 
their ankles (23, 28), knees (24, 27) and hips (25, 26). Similarly, 
the Yupno people of Papua New Guinea can count by indicating 
di!erent parts of the body.

>a_�+&�:g\q%hYjl�[gmflaf_�kqkl]e&

It is clear, therefore, that despite Brouwer and Dehaene sha-
re some common ideas, the intuitionist perspective of Brouwer 
is in principle incompatible with the second-generation embo-
died cognitive science of Dehaene. The embodied paradigm 
represents indeed a turning point compared to the traditional 

approach of "rst-generation cognitive science, since it does not 
consider anymore the human mind as a simple processor of 
symbols and of mathematical calculations. Thanks to this new 
conception, the studies on cognition and learning changed per-
spective, going from a point of view focusing on the abstract 
aspects of thought that were governed by formal and culture-
independent rules, to a point of view where the mind is context-
aware, distributed, action-oriented, holistic, culture-dependent, 
deeply linked to the principles of biological nature. The crucial 
change is represented by the fact that intelligent behavior starts 
being considered as a manifestation of biological bodies that act 
in their material and cultural environment while at the same time 
changing it9. All research carried out in the "eld of “embodied 
cognition” followed these principles and over the years this ap-

9 The keywords of this new approach indeed are: ‘situated’, ‘distributed’, 
‘social’, and ‘embodied’ (Hutchins, 1996; Lave, 1988; Núñez & Lako!, 2000).

proach has clearly shown its potential, demonstrating that the 
mind must be extended from an abstract place in the head to the 
actual functioning structure of the brain and to the entire body, 
until understanding the shape that the mind acquires in the so-
cial relationships that it creates and by which it could be a!ected.

Conclusion
According to the theories and ideas outlined in the previous 

paragraphs, it results clear that Dehaene’s position - which he 
describes “intuitionist” - in reality is very di!erent from the tradi-
tional philosophical ideas developed by intuitionists. The hypo-
theses of Dehaene did not only shed some light on the existence 
of a kind of natural, innate, and biologically based mathematics, 
but they focused in particular on the concept of numerosity, a 
term used to indicate the number sense and in particular the 
sense that recognises the size of a set (which, as we have seen, is 
subject to the distance e!ect and the size e!ect). The hypotheses 
of Dehaene therefore seem to focus less on the concept of num-
ber, because learning the concept of number requires a word or 
a symbol to represent it.

Of course, not all mathematics has to do with numbers. 
Beyond the linguistic and conceptual aspects of mathematics, it 
is possible to "nd that kind of innate and biologically based ma-
thematics that Dehaene describes in such wonderful terms, the 
kind of mathematics that belongs to a natural process of adapta-
tion to the environment. As Cellucci claims:

This is not surprising because mathematics, like all knowledge, is part 
of a natural process of adaptation to the environment. In this process 
mathematics plays an important role because, in the course of hu-
man evolutionary history, a decisive step towards the achievement of 
higher cognitive ability was the formulation of hypotheses on the bo-
dies in the environment, their location and their number, which has 
led man to discover new properties of the environment and to move 
towards more appropriate behaviors and to have the most successful 
(Cellucci, 2003: 338).

In other words, thanks to the mechanisms of evolution gui-
ded by natural selection, nature shaped living beings in such a 
way that they became able of performing speci"c actions and 
a series of natural mathematical calculations in order to grant 
their own survival. Therefore, both language-based mathematics 
and natural mathematics are mathematics, the only di!erence 
between them lies in how they are carried out. The former is ab-
stract, symbolic, and rule-based. The latter, on the other hand, 
is non-verbal, innate, and approximate. They are both equally 
important, but they are both quite di!erent from what Brouwer 
had in mind.
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